DTP

Documentation

Donald F. Geddis
March 10, 1995

Contents

1 DTP Overview

1.1 Introduction e
1.1.1 Approach e
1.1.2 Overview e

1.2 Syntax L

1.3 Inference e
1.3.1 Reduction

1.4 Enhancements e
1.4.1 Tteration e
1.4.2 Backjumping
1.4.3 Disjunctive Answerso e
1.4.4 Pure Literal Elimination
1.4.5 Residue/Abduction oo
1.4.6 Labels
1.4.7 Procedural attachment

1.5 Caching e
1.5.1 Conjunction Forking

1.6 Future Work e e
1.6.1 Practical
1.6.2 Theoretical

1.7 Acknowledgements

2 DTP User Manual

2.1 Recommended Systems

2.2 Installation e

2.3 Examples . . . oL

24 Demo e

2.5 Theory mechanism

3 DTP Reference Manual

3.1 Variables
3.2 Functions

3.3 Lisp Files

4 References

20
20
21
21
22
22
23
23
26
29

34

Chapter 1

DTP Overview

This manual describes the implemented inference engine called DTP! [Ged]. The system does refu-
tation proofs of queries from databases in first-order predicate calculus, using a Model Elimination-
style algorithm and domain-independent control of reasoning.

Technical discussion about the ideas behind some of the algorithms (particularily the caching
strategies) can be found in my thesis [Ged95].

1.1 Introduction

Is DTP for you? The intended audience is those who need a reliable black box inference engine. DTP
knows more about inference than most other theorem provers. An ideal application, for example,
would be as the back end to a machine learning program or mobile robot. Such systems have a
hard enough time just discovering true things about their worlds, much less figuring out how to
arrange that knowledge in a computationally tractable way. The philosophy in DTP is that the user
need only be concerned about writing down true axioms, and all search control knowledge will be
embedded in the inference engine.

This style is not appropriate if the knowledge base constructor is also an expert in inference. For
example, if the real intention in using the logic is to write a program, then perhaps PROLOG would
be more appropriate. Similarly so if the user is willing to manipulate all their knowledge so that
it may be expressed in a restricted form, e.g. as horn clauses. In that case, a much more efficient
algorithm can be used which takes advantage of this metalevel constraint. Some examples of such
systems are the aforementioned PROLOG, as well as OTTER [McC], the Boyer-Moore theorem prover
[BM], RRL [Lab], FRAPPS [Fri], and the suite of algorithms in EPIKIT [GS].

1.1.1 Approach

How is one to deal with this task of solving arbitrary queries from an unknown knowledge base? It
is clear that, since inference is NP-hard, not all queries will be answerable in a polynomial amount
of time. The approach taken here is to include, as part of the overall system, algorithms that have
the potential of eliminating some exponential part of the potential proof space, at a cost polynomial
in the size of the space actually explored.

Some well known examples of such algorithms include tautology elimination and subsumption.
In each case, the addition of the algorithms makes answering some queries slower (by a polynomial

1Don’s Theorem Prover

CHAPTER 1. DTP OVERVIEW 4

amount of time), but it changes improves others from being unanswerable (by virtue of requiring
an exponential amount of time) to actually returning an answer in polytime. Note also that the
additional overhead is polynomial in the size of the explored space, not in the size of the database.
So, for example, Pure Literal Elimination is done, but at the time of rule lookup, not prior to the
query over the entire database.

1.1.2 Overview

DTP uses subgoaling inference with model elimination reductions, which makes the inference sound
and complete. Additional pruning of the database results from pure literal elimination.

When solving conjunctions, backtracking is done via backjumping back to the nearest conjunct
that bound some variable in the failed conjunct.

In addition, recursion control via caching and slaving (sometimes called “memoing”) is imple-
mented, so many axiom sets that appear to have infinite paths (e.g. a transitive rule) still result in
a finite search space.

A residue-style assumption mechanism is integrated into the inference engine, allowing abductive
reasoning to occur. A list of patterns may be specified; if a literal in the proof is an instance of one
of the patterns, it may be assumed to be true. A second hook allows an arbitrary lisp function to
be called in order to enforce consistency in the assumptions of a given proof effort.

Although function symbols are allowed, at the present time DTP performs neither term reasoning
(with rewrite rules), nor does it have equality built in. The lisp arithmetic routines are interpreted,
however, and ground terms with recognized function symbols will be simplified via procedural
attachment. Term reasoning may be added by defining the function term-inference in the DTP
package.?

Disjunctive answers are maintained through the use of answer literals.

The unification code was taken from Matt Ginsberg’s MVL prover [Gin].

1.2 Syntax

Most of this manual assumes that the reader is familiar with the basic concepts of automated
inference, such as resolution, unification, and database indexing. If not, many introductory Al
texts (e.g. Ginsberg’s [Gin93b]) contain at least an overview of the topic. More details of the
standard approach can be found in a specialized text such as [GN8T].

The logical syntax used by DTP is generally compatible with KiF, the Knowledge Interchange
Format defined in [GF92]. Variables are lisp atoms beginning with the “?” character. Sentences
are lisp s-expressions in prefix form, with the following operator constants predefined: not, and,
or, =>, <=, and <=>. Many function constants are predefined to correspond to various arithmetic
functions in lisp, as described in the section 1.4.7.

The operator semantics include the normal boolean interpretation of and, or, and not for
conjunction, disjunction, and negation respectively.

K= a By B2 ... Bn)

means that « is true if all of the 3;’s are true, and is thus equivalent to

(or a =3y =By ... =(,)

2Vishal Sikka is exploring this approach. He may be contacted at vishal@cs.stanford.edu.

CHAPTER 1. DTP OVERVIEW d

The sentence
(=> 61 By ... Br @)

means the same as the previous one. The bidirectional sentence
k=> a)

means the same as
(and (k= a B) (=> a 3))

All logical expressions in the database are converted internally into clausal form by the standard
algorithm. Thus all existentially quantified variables are skolemized, and all remaining variables
are universally quantified. A clause is merely a list of literals, each negated or not.

As an example, in logic one might write

Va,y,z Outrun(z,z) C Outrun(z,y) A Outrun(y,z)
or in PROLOG

outrun(X,Z) :- outrun(X,Y), outrun(Y,Z)
In DTP, this same sentence is typically written

(<= (outrun ?x ?z) (outrun 7x 7y) (outrun 7y ?7z))
which is translated to the logically equivalent disjunctive list of literals

((outrun ?x ?z) (not (outrun ?x ?y)) (not (outrun 7y 7z)))

1.3 Inference

Subgoaling inference is a resolution-like rule which takes as input a literal and a clause and produces
another clause. Let g be the subgoal literal and {{;,...,q;,...,{,} be the literals in the clause, and
assume that ¢ unifies with g; with the binding list . Then the resulting clause of the inference is
{li,. ., lic1, lig1, ..o, o, t.e. the same clause with the literal g; removed and the binding list o
applied to all remaining literals.

For example, the subgoal (outrun lion ?prey)? resolves with the first literal in the clause

((outrun ?x ?z) (not (outrun ?x ?y)) (not (outrun 7y 7z)))
to produce the child clause?

((not (outrun lion ?y)) (mot (outrun 7y 7prey)))
which is equivalent to the conjunctive subgoal

(outrun lion ?7y) A (outrun 7y 7prey)

DTP applies this rule with the set-of-support restriction, so that subgoals are derived only from
the initial query or some subsequent child clause. The result is conceptually similar to a combination
of set-of-support and ordered resolution, where all contrapositives of each database sentence are also
stored in the database. The inference (with the addition of reduction, described in section 1.3.1) is
sound and complete for first-order logic.

3Which is equivalent to the clause ((not (outrun lion ?prey))).
4As usual, variables must be standardized apart within the database, so the variable ?y appearing here must
actually be replaced by some new variable not appearing elsewhere in the system.

CHAPTER 1. DTP OVERVIEW 6

1.3.1 Reduction

Reduction, a part of the model elimination procedure, is resolution between a subgoal and an
ancestor of that subgoal, and it serves a function similar to factoring in pure resolution systems. It
rarely comes up in practice, but is required for completeness.

Consider the database

(or (p a 7x) (p ?x a))

with the query (p 71 ?7j). Backward chaining on the goal by resolving with the first literal in the
database rule leads us to (not (p 7j a)) with ?7i—a. The reduction of this with the initial query
(with binding ?7j—a) yields the answer (p a a).

1.4 Enhancements

1.4.1 Iteration

DTP allows the inference space to be searched with depth-first iterative deepening (DFID) [Kor85]
rather than simple depth-first search. This iteration may apply to either the depth of a subgoal, in
terms of the length of the path from the root to the subgoal, or the depth of function nesting of
terms in a subgoal.

This latter search is particularly important in DTP. Many infinite paths in the subgoal space
can be dealt with using the recursion control techniques in section 1.5, but no such techniques are
implemented for dealing with infinite function recursion. Thus standard approaches such as DFID
are required in cases where such infinite spaces are likely.

An example using the animal theory follows. The sample run also takes advantage of postpone-
ment caching, as described in [Ged95]. The remainder of this section will assume familiarity with
the caching example.

Figure 1.1 shows a trace of the query

(prove ’(outrun lion ?prey) :all-answers t)

with the following variable settings changed from the defaults:

theory animal

trace (:cutoffs :iteration :answers)
use-subgoal-cutoffs t

initial-subgoal-depth 1

subgoal-depth-skip 1

subgoal-maximum-depth 7

Some things to note about the trace include

1. Once an answer is found (at depth 2), and another is searched for, the search does not begin
from scratch; rather, the current space is continued.

2. Repeated answers are detected and ignored. Naturally, the search to depth 3 finds (at least)
the same answers at the one to depth 2; such answers are not reported.

3. The iteration only continues as long as some part of the space was pruned. In this case,
despite a requested maximum depth of 7, the final phase was the search to depth 6, because
no pruning occurred during that phase.

CHAPTER 1. DTP OVERVIEW 7

The proof completes, returning the usual multiple values

{((OUTRUN LION ZEBRA) (OUTRUN LION DOG) (OUTRUN LION (FOOD DOG)))

(NIL NIL NIL)

(NIL NIL NIL)

(#<Answer ?PREY->Zebra> #<Answer 7PREY->Dog> #<Answer ?PREY->Food(Dog)>)
#<Proof of (OUTRUN LION ?PREY) with 3 answers [Complete]>

1.4.2 Backjumping

When solving a conjunctive subgoal, most theorem provers do depth-first search through the space of
solutions. The first conjunct is solved, the resultant bindings plugged in to the remaining conjuncts,
and then the process iterates. When some intermediate instantiated subgoal has no solutions at all,
then some form of backtracking must take place, to return to some previous choice point and try a
different choice. In the typical depth-first search algorithms, this is implemented with chronological
backtracking, returning to the most recently made choice in the event of a failure.

This search can be unnecessarily expensive, however, if the root cause of a failure at some
conjunct is a poor choice at a very early conjunct. The same failure at the downstream conjunct
will be discovered over and over again.

Problems very similar to this have been addressed in the constraint satisfaction literature. Their
problems are different in at least two important ways:

1. The domains of the variables are finite, and known explicitly in advance.

2. In addition to the query, there is a set of constraints with nice properties, e.g. variable con-
sistency can be checked against them with a very low complexity algorithm.

Solving a conjunction in inference doesn’t share these properties. Nonetheless, it is often the case
that the insights behind various constraint satisfaction algorithms can yield analogous algorithms
in theorem proving. DTP uses a form of backjumping,® where the search backtracks past all (easily-
computed) irrelevant conjuncts until locating one that actually impacts the detected failure. In
essence, it is possible to discover short proofs that large portions of the search space will not have
solutions either, given one particular failed solution.

DTP actually doesn’t maintain the bindings themselves in the explanations for failure, merely the
blamed conjuncts. (The bindings could be useful to avoid generating a new answer with the same
failing bindings, but that’s a rare occurrence anyway so the existing code avoids that additional
complexity. See the end of this section for an example of how an algorithm might be even more
clever.)

Example

An example may help illustrate backjumping in DTP.® Consider the query G(?w) for the database
in table 1.1.
The proof space is shown in figure 1.2.

5Other candidate algorithms include GSAT, Min-conflicts, Dependency-directed backtracking, and Dynamic
backtracking [Gin93a].

6The example presented only requires database lookup to solve. Note that this is only for clarity of explanation,
as DTP does backjumping for full inference problems.

CHAPTER 1.

DTP OVERVIEW

Subgoal depth cutoff = 1
Looking for next answer of (OUTRUN LION ?PREY)
Eat(Lion,?prey) cutoff because depth > 1 (subgoal max)

Subgoal depth cutoff = 2
Looking for next answer of (OUTRUN LION ?PREY)
Found answer #<Answer 7PREY->Zebra>

Subgoal depth cutoff = 2
Looking for next answer of (OUTRUN LION ?PREY)
Found answer #<Answer 7PREY->Dog>

Subgoal depth cutoff = 2

Looking for next answer of (OUTRUN LION ?PREY)
Outrun(Dog, ?prey) cutoff because depth > 2 (subgoal max)
Eat(Zebra,?prey) cutoff because depth > 2 (subgoal max)
Carnivore(Lion) cutoff because depth > 2 (subgoal max)
Eat(Dog, ?prey) cutoff because depth > 2 (subgoal max)

Subgoal depth cutoff = 3

Looking for next answer of (OUTRUN LION ?PREY)

Answer #<Answer 7PREY->Zebra> ignored because not new
Answer #<Answer 7PREY->Dog> ignored because not new
Eat(Dog, ?prey) cutoff because depth > 3 (subgoal max)
Carnivore(Zebra) cutoff because depth > 3 (subgoal max)

Subgoal depth cutoff = 4

Looking for next answer of (OUTRUN LION ?PREY)

Answer #<Answer 7PREY->Zebra> ignored because not new
Answer #<Answer ?PREY->Dog> ignored because not new
Carnivore(Dog) cutoff because depth > 4 (subgoal max)

Subgoal depth cutoff = 5

Looking for next answer of (OUTRUN LION ?PREY)

Answer #<Answer 7PREY->Zebra> ignored because not new
Answer #<Answer ?PREY->Dog> ignored because not new
Found answer #<Answer ?PREY->Food(Dog)>

Subgoal depth cutoff = 5
Looking for next answer of (OUTRUN LION ?PREY)
Carnivore(Food(Dog)) cutoff because depth > 5 (subgoal max)

Subgoal depth cutoff = 6

Looking for next answer of (OUTRUN LION ?PREY)

Answer #<Answer 7PREY->Zebra> ignored because not new
Answer #<Answer ?PREY->Dog> ignored because not new
Answer #<Answer 7PREY->Food(Dog)> ignored because not new

Figure 1.1: Trace of Iterative-Deepening Proof

CHAPTER 1. DTP OVERVIEW

G(?w) < A(?w) and B(7j) and C(7k) and D(7x) and
E(?j,7k) and F(7w,7x)

AC1)

A(6)

B(2)

c(3)

c(5)

D(4)

E(2,5)

F(6,4)

Table 1.1: Tllustration of Backjumping

G(w)

[A(w) | B(7) | C(%) | D(?) [E(,%) | F(w,?) |

'mﬂerﬁz’ﬁsl >5 L’““ N N\

| Lookup [Lookup N Lookup JE Lookup M Lookup | E(2,3) E(2,5) F(1,4) F(6,4)

y y

Figure 1.2: Hlustration of Backjumping

CHAPTER 1. DTP OVERVIEW 10

We begin by solving the A(?w) conjunct, binding 7w to 1. Then B(?7j), with 7j—2, then C(7k),
with 7k—3, and then D(7x) with ?x—1.

At this point we attempt to solve E(2,3), and fail, necessitating a backtrack. The explanations
for the failure are B and C, the two previous conjuncts which bound variables appearing in E. We
select the most recent one, C, and backjump to there, recording the remaining part of the explanation
(conjunct B), in the set of explanations for C.

Continuing in the search, we call the C(7k) inferential generator again, yielding the new binding
?k—5. Then D (having restarted, since we backed up over it) binds 7x to 4 again, and this time
E(2,5) succeeds with no additional bindings.

Now F(1,4) fails. Computing the explanations (i.e. the conjuncts which caused 7w to be bound
to 1 and x to 4), we get the set of conjuncts {4,D}. We back up to the most recent, namely D, and
add conjunct A to D’s explanation set. Calling the generator on D yields no new answers, so we must
back up again. No previous conjunct bound a variable in D(?x), but from the failure at F we had
already put conjunct A on D’s explanation set, so we backjump to A and search for a new answer.

The generator for A(7w) returns w—6 this time. The search from then proceeds much as before,
including the rediscovery” of the failure to find a solution for E(2,3) and the backjump to C at
that point. When we arrive at conjunct F the second time, we attempt to solve F(6,4), and this
succeeds. Thus the query is proved, with the bindings ?7w—6, 7j—2, 7k—5, and 7x—4.

Improvement

Obviously, backtracking algorithms more complex than backjumping could be used. But there is a
different, structural, limitation of DTP’s current framework. All of the backtracking occurs within
a conjunction, which is an object that is the child of some literal. It is impossible to jump across
conjunctions.

When trying to prove the query

P(7x,7y) and Q(7x,7y)

from the database® in table 1.2, the conjunction
A(?7x) and B(?y)

will be worked on as the child of P(7x,7y), and
C(?y) and D(7x)

as the child of Q(7x,?y). If the last child conjunct D(?7x) fails, the best DTP can do is terminate
that local conjunction, backtrack to the query conjunction, and ask for a new solution to P(7x,7y).
The problem is that in effect we’re working on the long conjunction

A(?x) and B(?7y) and C(?7y) and D(7x)

in which case a failure at D(7x) should cause us to backjump to A(?x). Instead, DTP finds a new
solution to B(?y) and then fails again on the conjunction below Q(?x,?y), before finally generating
a new answer to A(?x) and solving the query. (The proof space is shown in figure 1.3.) There of
course could be an arbitrary amount of work involved in finding all the solutions to B(?y), even
though we can easily see that none of them will prevent a continuing failure for the subgoal D(1).

"The attempt to avoid re-doing such work is the inspiration behind the dynamic backtracking algorithm [Gin93a].
8] am indebted to Michael Genesereth for this example.

CHAPTER 1. DTP OVERVIEW 11

P(?x,7y) <« A(7x) and B(7y)
Q(?x,?7y) <« C(7y) and D(7x)
A1)
A(2)
B(10)
B(11)
Cc(10)
c(11)
D(2)

Table 1.2: Backjumping across conjunctions

[P(x%) [Q%) |

— FONT~

[A) [B(®) | Q(1,10) Q(111) Q(210)

I=zm [C(0) [D] [CAD [0] [C0) [D@]

Figure 1.3: Backjumping across conjunctions

CHAPTER 1. DTP OVERVIEW 12

1.4.3 Disjunctive Answers
Consider the database composed of the single sentence
Winner(Stanford) or Winner(Cal)
A query of Winner(?team) will be interpreted as
Do you know that some team won the Big Game?
rather than as
Do you know of a particular team that won the game?
The returned answer will thus be the disjunction
Winner(Stanford) or Winner(Cal)

as shown in figure 1.4. (Note that this space shows a failed proof attempt, using a reduction with
an ancestor goal. This path of reasoning does not result in an answer because the various binding
lists on the path are not unifiable.)

Winner(?team)
‘ ?team->Stanford

~Winner(Cal)

'@amoc:al lOr “team->Cal

Figure 1.4: Disjunctive answer: Who won the Big Game?

The maintenance of the disjunctive binding lists is by a technique analogous to answer extraction
of answer literals in resolution systems. The answer literals are attached to the negated goal (which
must be added to the database during the proof to ensure completeness), so resolutions with the
negated goal result in additional disjunctive bindings at the end.

1.4.4 Pure Literal Elimination

A pure literal is one which has no negated pair anywhere in the database.” Such literals can never
be removed by refutation resolution, and thus clauses with pure literals can never participate in the
proof of any query.

DTP does pure literal elimination. The implementation removes individual rules just before they
are resolved against, rather than running a process over the whole database before the proof begins.
(This allows the algorithmic complexity to be a function of the size of the proof, rather than the
size of the database.)

Consider the database in table 1.3 with the goal G. Imagine that the subgoal H were very hard
to prove, e.g. imagine that it reduced to solving Fermat’s Last Theorem. Notice that the subgoal

CHAPTER 1. DTP OVERVIEW 13

G < Hand I
G <« P

H <« Fermat
P

Table 1.3: Pure Literal Elimination database

I is impossible to prove. DTP will recognize that the first rule is irrelevant, and thus will avoid the
computationally expensive attempt to prove the subgoal H.
Here is a sample trace of such a proof:

Creating new subgoal G

Expanding subgoal G [0]

[Pure literal "I detected in T-PURE-1...removing
G <= H and I

for duration of proof]

..Creating new subgoal P

Expanding subgoal P [1]

. .Propagating #<Answer TRUE> to subgoal P

....Propagating #<Answer TRUE> to subgoal G

The proof space shown in figure 1.5 does not include any use of the first rule in the database.
G
p
Lookup

Figure 1.5: No pure literals

1.4.5 Residue/Abduction

A residue-style assumption mechanism is integrated into the inference engine. A list of patterns
may be specified; if a literal in the proof is an instance of one of the patterns, it may be assumed
to be true. Common examples of such a thing might be the various “not abnormal” predicates in
many nonmonotonic descriptions of commonsense domains, or the existence of a component (like a
digital gate in electronic design or an action is a planning domain) in a synthesis problem.

The assumption pattern list may be set by changing the value of the global variable
assumablesx.

9Gince resolving with the negated query is also a valid inference step, in order for a literal to be pure there must
be no matching literal in the query either.

CHAPTER 1. DTP OVERVIEW 14

It is often the case that, while any individual assumption matching the pattern is a reasonable
thing to assume true, that many combinations of assumptions are inconsistent. It is, of course,
possible just to enumerate proofs containing assumptions and at the end discard those with incon-
sistent assumption sets, but such an approach is very inefficient. Thus a second hook allows an
arbitrary lisp function to be called in order to enforce consistency among the assumptions in the
middle of the proof effort itself.

The hook for the lisp function to check assumption consistency is the value of the global variable
*consistency-checkx.

1.4.6 Labels

The inference mechanism in DTP maintains labels on clauses, and combines them with local label
computations. This isn’t sufficient for more interesting kinds of reasoning (such as probability or
fixed-point nonmonotonic systems) which have a global consistency check, but it nonetheless is
occasionally useful. For example, MYCIN certainty factors and fuzzy logic both can be embedded
within a local label system.

To use a new system of labels, a label structure must be defined within lisp. Required elements
are: a minimum value, a maximum value, a conjunctive combination function, and a disjunctive
combination function. The combination function must take as input two labels from the system,
and return the label which is to be assigned to the and or or respectively of the input labels.

Some label structures are predefined in labels.lisp. For example, a version of qualitative
likelihoods arises with the following Lisp code:

(defparameter *ql-values*
’(false default-false unknown default-true true))

(defun gl-and (&rest labels)
(setq labels
(mapcar
#’ (lambda (x) (position (label-value x) *ql-values*))
labels))
(nth (apply #’min labels) *ql-values*))

(defun gl-or (&rest labels)
(setq labels
(mapcar
#’ (lambda (x) (position (label-value x) *ql-values*))
labels))
(nth (apply #’max labels) *ql-values*))

(create-label-structure qualitative-likelihoods
true false gl-and gql-or)

Note that no connection is made between the label for a sentence and the label for its negation.
This allows the label computation to be a simple addition to the normal first-order proof space, but
it also severely limits the type of label structures that can be used with DTP.

CHAPTER 1. DTP OVERVIEW 15

1.4.7 Procedural attachment

The common lisp arithmetic functions are procedurally attached to the theorem prover. Any ground
terms encountered during the inference process, in which the function symbol is one of the following
constants, is simplified by calling the lisp evaluator on the expression. Expressions that cause an
error in the process lisp evaluation simplify to the constant 0.

The attached functions are:'®

+ - % / 1+ 1- abs acos acosh ash asin asinh atan atanh boole ceiling cis
complex conjugate cos cosh decode-float denominator exp expt fceiling ffloar
float float-digits float-precision float-radix float-sign floor fround
ftruncate gcd imagpart integer-decode-float integer-length isqrt lcm log
logand logandcl logandc2 logcount logeqv logior lognand lognor lognot logorcl
logorc2 logxor max min mod numerator phase rational rationalize realpart rem
round scale-float signum sin sinh sqrt tan tanh truncate

In addition, a ground term whose function constant is eval is simplified by applying the first
argument to the rest of the arguments. Lisp errors result in a simplification to NIL. (The use of
eval is intended to be a simple form of procedural attachment, so errors turn in to the generic
lisp null value of NIL. The arithmetic functions above are typically used in the domain of numbers,
which is why errors in those terms simplify to the usual arithmetic null value of zero.)

A hook exists in the code to extend the attachment mechanism. If the function term-inference
is defined in the DTP package, then all ground terms not satisfying the first two conditions above!!
are replaced with the result of calling the lisp function term-inference on the ground term (which
is a lisp list).

1.5 Caching

Caching is an attempt to reuse previous problem-solving effort, by replacing otherwise needed
(possibly exponential) search with simple lookup. DTP offers a suite of possible caching schemes.
Describing them all is beyond the scope of this section; please see my thesis [Ged95] for more details.

1.5.1 Conjunction Forking

Ideally, the caching mechanism would be independent of the heuristic question of what part of the
space to search next. We would like to be able to explore relevant subgoals in any order that seems
to be most usetul.

Postponement caching in essence treats the search space as a true graph, rather than as the
redundant tree typically explored by theorem provers. This means that when a solution is needed
for a subgoal, say by a distant conjunction in the middle of searching its own space, a possible
response is neither “here is a new answer,” nor “there are no more answers” (which would let the
conjunction backtrack), but rather “the final state is not known yet.”

This means that the mechanism which searches the conjunction space must be capable of forking,
allowing a subtree of the space to continue (under the condition that a distant subgoal finally finds

10T his list was copied from EPIKIT’s list of attached functions, after removing the special cases of denotation,
eval, execute, list, and name.
1 More precisely, this means terms with a function constant of either eval or one of the listed arithmetic functions.

CHAPTER 1. DTP OVERVIEW 16

a further answer), and also being able to continue the search under the assumption that an answer
will never return.

Even that isn’t sufficient, though. A deadlock cycle can arise, where all conjunctions of all
subgoals are blocked, waiting for some other subgoal to return with some answer. Consider the
database in table 1.4. The space in figure 1.6 shows the bug that can result if no special mechanism
is implemented. The correct space (with a proof) is shown in figure 1.7.

G <« P(?x) and Q(?x)
P(1)

P(2)

Q(2)

Q(1) <« R and S

R < T and S

T < QW

S

Table 1.4: Postponement blocks

G

{

[P [) |

x->1

Q)
vy
S

s

[TTs]

Figure 1.6: An apparently complete space

1.6 Future Work

1.6.1 Practical

The following ideas are missing from DTP not for any theoretical reason, but merely because of my
own limited resources. Had I been the project leader for a team of programmers tasked to create
an inference engine, I’d probably have assigned one to implement each of these concepts.

Lisp efficiency As this was a research tool, my implementation doesn’t make the best use of
efficiency hacks. In particular, non-destructive functions are used almost everywhere, even

CHAPTER 1. DTP OVERVIEW 17

G

{

[P(>) [Q(%) |

RN

A) QP
‘4
'[RIS]

T]S]

\
\

Figure 1.7: The actual complete space

when their destructive counterparts might be permissible. This makes the code much more
reliable and easier to debug, but at a cost of loss of object code efficiency. In particular, binding
lists are constantly copied (and literals are plugged in to), where more careful thought in the
code probably would allow substantially less consing.

Equality Many applications of inference are most naturally stated with some form of equality, and
many well-known algorithms address this issue. In particular, demodulation and paramodu-
lation are probably useful things to have in the theorem prover.

Term reasoning In addition, full support for term rewrite rules probably makes sense. 1 suspect
that all the same issues in inference (caching, recursion control) arise in an analogous way for
term rewriting. It was because I didn’t envision any new issues that this aspect of reasoning
was left out of DTP.

Induction After term reasoning is implemented, it might be useful to allow inductive proofs on
well-founded sets.

Fast database lookup State-of-the-art PROLOG systems are using Rete networks for fast match-
ing and unification. Alpha nodes handle the matching of constants, and beta nodes take care
of variables. The alpha network itself can be implemented with a discrimination net data
structure.

Connection graph Clauses that resolve with each other can be cached, which also allows polytime
forward inference in the graph.

Cache lookup Currently, a cache match on subgoals happens if the literals are identical up to
variable renaming. There is an opportunity, however, to save some work if an existing subgoal
is found that is an instance of the required subgoal. In that case, any current answers to the
instance subgoal can be copied over to the newly created generalized subgoal. (Similarly, a
new instance subgoal could check any existing generalized subgoals to see if they happen to
contain appropriate answers already.)

CHAPTER 1. DTP OVERVIEW 18

Backtracking DTP uses backjumping to explore the search space of a conjunction, which is sub-
stantially better than the typical depth-first search of most inference algorithms. This could
still be improved in two ways:

1. Use a more sophisticated constraint satisfaction algorithm, e.g. dynamic backtracking.

2. With any algorithm, one could record the failed binding itself in addition to the con-
junct that had a failed binding. This way, when searching for a new answer to that
conjunct, new answers which happen to have the same failed bindings could be rejected
immediately.

1.6.2 Theoretical
Memory use

DTP’s storage requirements grow linearly with time spent. The most blatant example is that the
entire proof space that has been explored so far remains resident.

As Richard Korf writes [Kor92]:

Since best-first search stores all generated nodes in the Open or Closed lists, its space
complexity is the same as its time complexity, which is typically exponential. Given the
ratio of memory to processing speed on current computers, in practice best-first search
exhausts the available memory on most machines in a matter of minutes, halting the
algorithm.

Thus search algorithms like iterative deepening have the advantage that even if an exponential
amount of time is required to solve the problem, only linear space is necessary.

Rather than take an iterative approach,'? DTP commits to vast storage requirements. The
“correct” idea should be to use all the memory that is available at the time. When available
memory is filled, selective forgetting can free up needed space, by throwing away the least useful
part of the space. In order to maintain completeness, some form of summarization is needed. As
an example in straight search, Korf’s recursive best-first search algorithm [Kor92] maintains this
selective forgetting with appropriate summaries.

[imagine something similar could work here, although it would require more theoretical effort
to work out the details. At the moment DTP will just fill the available memory and then fail.

Counterexamples

When searching for a proof of some concept P, humans (after spending some effort and failing to
discover a proof) will switch to trying to construct a counterexample for P, i.e. they’ll spend some
effort on a proof of =FP. What is interesting about this from a theoretical point of view is that
finding a proof for =P typically aids you not at all in solving your top level goal; it merely means
you must look elsewhere in the proof space for a solution to the original query. So the search for
counterexamples is a purely metalevel computation.

What is the proper protocol for such a computation? How do you tradeoff some possible meta
computation such as this one, with the additional progress you could make on the baselevel search?
What is it, exactly, that you learn by the process of trying (and failing so far) to find a proof of
some proposition? It what way does it lead you to believe more and more that the proposition is
actually false?

12Not storing the space would force us to give up the other uses of the proof space, such as recursion control.

CHAPTER 1. DTP OVERVIEW 19

Decision Theory

Given a partial proof space with a fringe, which of the possible items on the fringe should be worked
on next? It is difficult to apply decision theory directly, because the necessary information (expected
computational cost and probability of success) is typically not available at the fringe of an inference
proof space. What information ¢s available? Is there a way to gather the needed decision theory
information?

While recursion control takes care of many loops, it is still the case (especially with function
symbols able to create an infinite number of objects) that a given tack might be able to be explored
forever, without success. It seems again, as in the counterexample case, that you want some kind
of exponential falloff in effort, that the longer you work on an approach without success, the more
likely you’ll try some other approach. Is there a formal basis for such a protocol? In what way is
it different from doing breadth-first search, which seems to sacrifice focus?

1.7 Acknowledgements

The unification source code came from Ginsberg’s MVL inference system [Gin].

Chapter 2

DTP User Manual

This appendix describes version 2.7 of DTP. Please send comments to Don Geddis at
Geddis@CS.Stanford.EDU
or

Computer Science Department
Stanford University
Stanford, California 94305

The code was developed under Franz Allegro CL 4.2.beta.0 (on a Sun Sparc) and is written in
Common Lisp with some CLtL2 extensions.! Earlier versions were tested under Lucid HP Common
Lisp Rev. A.04.01 (on an HP-9000 Series 300/400) and MCL 2.0p2 (on an Apple Macintosh),
although the latest version has not been.

DTP is available on the World Wide Web (WWW) from
http://logic.stanford.edu/dtp/dtp.tar.gz

as a Unix-style TAR file, compressed with GNU’s gzip utility.
The documentation is also available in the same DTP directory:

http://logic.stanford.edu/dtp/manual .ps.gz

as a postscript file compressed with GNU’s gzip utility.

2.1 Recommended Systems

There is an extensive explanation module built in to DTP. It is capable of producing text descriptions
of proof spaces or justifications for answers, but the much clearer approach is to construct two-
dimensional graphs. Such graphs are written in a format suitable for input to AT&T’s DOT program.
DOT is available by contacting Stephen North at

north@research.att.com

IFor example, liberal use is made of the LOOP macro.

20

CHAPTER 2. DTP USER MANUAL 21

The DOT program will convert the logical output of DTP into some metric form, for example
postscript. While such files can of course be printed on a postscript-compatible printer, a better
approach is to use a postscript previewer like the freely-available ghostview program for unix and
X windows.

Finally, a large collection of theorem proving examples is available in the TPTP (Thousands of
Problems for Theorem Provers) collection. It can be found on the World Wide Web at

http://wwwjessen. informatik.tu-muenchen.de/"suttner/tptp.html

2.2 Installation

Loading dtp.1lisp loads all the other files. Customization is available by editing various forms
within the file. In particular, logical pathnames for the system are defined there. Also, two functions
(compile-dtp and load-dtp) are defined in dtp.lisp. It’s generally a good idea to compile a lisp
program before using it.

Installation options are implemented by modifying the *features* variable, which allows pieces
of the code to have the compiler customize them. The available options are:

Customize

Feature :customize-dfg is present or absent. If present, it makes the default directories
correct for Don Geddis.

Tracing

Feature :dtp-traceis present or absent. This controls whether to include code and data struc-
tures for watching the inference in the middle of problem solving (and for examining proof
spaces afterwards). Most applications will want this option present, but some (e.g. an au-
tonomous process) might wish the extra speed and smaller space, sacrificing user-friendliness.

Types

Feature :dtp-types is present of absent. If present, most functions will have the data types
of their variables declared. Some Lisps react poorly to declaring types, and this feature may
be removed without affecting the correctness of the code.

2.3 Examples

Most of the functionality is shown in the examples in the logical theories, which are exercised by
running the function (TEST-DTP). It is often useful to run some of those examples by hand, in
particular after turning on full tracing output with a sequence like this:

(SETQ *THEORY* ’<some theory>)
(SETQ *TRACE* *TRACE-KEYWORDS*)
(PROVE ’<some goal>)

Other functions of interest include:

(SETTINGS) Describes the state of the theorem prover options.
(POSSIBLE-SETTINGS) Gives the valid possibilities for each of the variables in the (SETTINGS) list.

(SHOW <object>) Takes a proof object or an answer object and generates a postscript graph of
the space using AT&T’s program dot.

CHAPTER 2. DTP USER MANUAL 22

2.4 Demo

First load DTP by starting lisp and then evaluating the following forms:

(load "dtp")
(in-package "DTP")
(test-dtp)

(The last form should return “0”, indicating no errors.)
To run examples by hand, try (for example):

(push :proofs *tracex)

(setq *theory* ’dtp2)

(show #*theoryx*)

(prove ’(a 7i 7j)) [Returns (4 0 9)]
(show-proof-graph *last-proof*)

(prove-next-answer *last-proof#*) [Returns (4 1 2)]
(show-proof-graph *last-proof*)

(prove-next-answer *last-proof#) [Returns (4 6 5)]
(show-proof-graph *last-proof*)

(prove-next-answer *last-proof#*) [Returns NIL]
(show-proof-graph *last-proof*)

An example that demonstrates recursion control is available by attempting to prove the query
(outrun lion 7prey)

in the theory animal, after setting *caching#* to :postponement. See section 1.5 for an explanation
of the proof.

2.5 Theory mechanism

The active database at any one time is defined by a root theory, and the transitive closure of the
subtree of the theory DAG beginning at that root theory. All sentences in any theory within that
subtree are database sentences for the current proof.

Chapter 3
DTP Reference Manual

3.1 Variables

The function (settings) will list all the parameters of the theorem prover, and show their current
settings. A structured list of the set-able variables is shown in figure 3.1. In the list below, the first
line of each entry is the variable, initial value, and grouping.

assumables nil General
A list of patterns such that literals which are an instance of one of the patterns are assumed
to be true, via the residue mechanism.

consistency-check nil General
A lisp function, or NIL. If present, sets of literals assumed by the residue mechanism are forced
to remain consistent according to this function.

display-color nil Graphics
When constructing a graph, cache links between subgoals need to be distinguished from
normal inference links. If true, the two classes of links are drawn with different colors. If
false, inference links are drawn with solid arcs and cache links with dashed arcs.

display-landscape® t Graphics
Orientation of page for graphs. If true, graph is drawn and displayed on an 11”7 by 8.5” page.
If false, the standard 8.5” by 117 is used.

display-logic-as-lists nil Output
Output form preference. Whether literals should be printed with relation names before or
after the parentheses, and whether constants should be capitalized. When t, literals look like
(father don jim); when nil, the appearance is Father(Don, Jim).

display-one-page t Graphics
Whether to try to compress a drawn graph to force it to appear on a single page. Also centers
drawing on that page.

display-query t Graphics
Whether to add a node at the top of a proof drawing with the original query. If true, this
additional node will force all drawings to be a graph. If false, disjunctive queries may cause
drawing to be a forest of disconnected graphs instead.

23

CHAPTER 3. DTP REFERENCE MANUAL

General
theory *assumables* *consistency-checkx*
Inference Engine

use-negated-goal *use-subgoal-inference* *use-contrapositivesx
use-reduction *use-pure-literal-elimination* *use-backjumpingk
caching *use-residue* *use-procedural-attachments* *use-reordering*

Iteration

use-subgoal-cutoffs *initial-subgoal-depth* *subgoal-depth-skipx*
subgoal-maximum-depth *use-function-cutoffs* *initial-function-depth*
function-depth-skip *function-maximum-depthx*

Display form
display-logic-as-lists *show-renamed-variables* *graphic-display*
Graphic Display

display-one-page *display-as-figure* *display-landscape*
*display-title*x *display-query* *display-color*
display-constrained-ranks

Tracing

trace *single-step*

Figure 3.1: User Set-able Variables in DTP

CHAPTER 3. DTP REFERENCE MANUAL 25

display-title t Graphics
Whether to add descriptive text below a proof space drawing.

function-depth-skip 1 Iteration
The (integer) value to increment the function depth cutoff during every level of the iterative
search.

function-maximum-depth nil Iteration

Subgoals with terms having nested functions greater than or equal to this value (if set to an
integer) will be pruned in the search space. This is also the final function depth cutoff if
iteration is occurring.

initial-function-depth 1 Iteration
When iterating the function depth cutoff, the is the initial cutoff.

initial-subgoal-depth 1 Iteration
When iterating the subgoal depth cutoff, the is the initial cutoff.

show-renamed-variables nil Output
When sentences are retrieved from the database, variables must all be renamed. It is often
easier to read output with the original names, and the possible confusion of similar-printing
but distinct variables rarely occurs. This variable controls whether the unique integer suffix is
printed when the variables are output. (This variable has nothing to do with the underlying
algorithms, which always use renamed variables.)

subgoal-depth-skip 1 Iteration
The (integer) value to increment the subgoal depth cutoff during every level of the iterative
search.

subgoal-maximum-depth nil Iteration

Subgoals with terms having nested functions greater than or equal to this value (if set to
an integer) will be pruned in the search space. This is also the final subgoal depth cutoff if
iteration is occurring.

*theory® global General
Root theory for sentences to be used in proofs, if not specified in the prove function call. The
set of sentences will be those in the transitive closure of the theory DAG beginning at this
root.

trace (:file-load :tests) Tracing
A list of keywords, each of which controls the output of trace output printed as DTP runs.
The possible options are in the list *trace-keywords*, and resetting DTP sets it to the value
of *trace-defaultsx*. Its initial value is the value of *trace-defaultsx.

use-backjumping t Inference
Backjumping (vs. chronological backtracking) upon failure in a conjunction.

*use-caching® t Inference
Caching and recursion control.

CHAPTER 3. DTP REFERENCE MANUAL 26

*use-contrapositives® t Inference
If the database is not Horn, then for ordered resolution (the basic inference mechanism) to
be complete, all contrapositives of each database sentence must also be used. If a implies 3,
then the contrapositive of that rules is that the negation of 4 implies the negation of a.

use-function-cutoffs t Iteration
If true, the various function cutoff variables will be active and thus the search space will be
pruned if the function nesting of terms in a subgoal is more than one of the bounds.

use-negated-goal t Inference
For completeness, the negated goal must be added to the database before a proof attempt
begins.

use-procedural-attachments t Inference

Term simplification.

*use-pure-literal-elimination® t Inference
Eliminate rules with pure literals.

*use-reduction™ t Inference
Goal-goal resolutions (a subgoal with an ancestor).

*use-reordering® t Inference
Reorder subgoal agenda, to put most likely subgoals first.

use-residue® t Inference
Assumption mechanism.

use-subgoal-cutoffs nil Iteration
If true, the various subgoal cutoff variables will be active and thus the search space will be
pruned if the length of the path from the root to a subgoal is more than one of the bounds.

use-subgoal-inference t Inference
The basic resolution mechanism (ordered resolution).

3.2 Functions

These functions are exported from the DTP package. In the list below, the first line of each entry is
the function, arguments, and source file.

all-theories hierarchy.lisp
List all theory names with defined sentences. Related functions: includes unincludes
includees decludes included-active-theory-names show-theory-dag.

brf fact eptkit-dtp.lisp
Related functions: knownp proval remval prologp prologx prologs save drop empty facts
content.

contents theory eptkit-dtp.lisp

Simulate EPIKIT function to display the contents of a theory. Related functions: knownp
proval remval prologp prologx prologs save drop empty facts brf.

CHAPTER 3. DTP REFERENCE MANUAL 27

decludes theory-name hierarchy.lisp
Related functions: includes unincludes includees included-active-theory-names
show-theory-dag all-theories.

drop fact theory eptkit-dtp.lisp
Simulate EPIKIT function to remove a fact from a theory. Related functions: knownp proval
remval prologp prologx prologs save empty facts contents brf.

drop-sentence-from-theory sentence &key :theory-name :test database.lisp
Related functions: empty-theory make-theory-from-sentences save-sentence-in-theory
sentences-in.

dtp-load filename file.lisp

empty theory eptkit-dtp.lisp
Simulate EPIKIT function to empty a theory of facts. Related functions: knownp proval
remval prologp prologx prologs save drop facts contents brf.

empty-theory theory-name database.lisp
Related functions: make-theory-from-sentences save-sentence-in-theory
drop-sentence-from-theory sentences-in.

facts atom theory eptkit-dtp.lisp
Simulate EPIKIT function to return list of clauses in a theory. Related functions: knownp
proval remval prologp prologx prologs save drop empty contents brf.

included-active-theory-names theory-name hierarchy.lisp
Related functions: includes unincludes includees decludes show-theory-dag
all-theories.

includees theory-name hierarchy.lisp
Related functions: includes unincludes decludes included-active-theory-names
show-theory-dag all-theories.

includes theory-name-1 theory-name-2 hierarchy.lisp
Related functions: unincludes includees decludes included-active-theory-names
show-theory-dag all-theories.

knownp fact theory eptkit-dtp.lisp
Simulate EPIKIT function to look up a fact in a theory (no inference). Related functions:
proval remval prologp prologx prologs save drop empty facts contents brf.

load-logic-samples test.lisp
Load the sample logic files that come with the DTP system. Related functions: test-dtp
show-proofs.

make-theory-from-sentences theory-name sentence-label-pairs database.lisp
Related functions: empty-theory save-sentence-in-theory drop-sentence-from-theory
sentences-in.

CHAPTER 3. DTP REFERENCE MANUAL 28

plug x bdg-list bindings.lisp

prologp fact theory eptkit-dtp.lisp
Simulate EPIKIT function to prove a fact from a theory. Related functions: knownp proval
remval prologx prologs save drop empty facts contents brf.

prologs expr fact theory eptkit-dtp.lisp
Simulate EPIKIT function to find all proofs of a fact from a theory. Related functions: knownp
proval remval prologp prologx save drop empty facts contents brf.

prologx expr fact theory eptkit-dtp.lisp
Simulate EPIKIT function to prove a fact from a theory (returning bindings). Related func-
tions: knownp proval remval prologp prologs save drop empty facts contents brf.

proval fact theory eptkit-dtp.lisp
Simulate EPIKIT function to find the value of a term. Related functions: knownp remval
prologp prologx prologs save drop empty facts contents brf.

prove query &key :all-answers :return-form :suppress-disjunctive-answers
prover.lisp
Related functions: prove-next-answer proof-all-remaining-answers.

prove-all-remaining-answers &optional *proof* prover.lisp
Related functions: prove prove-next-answer.

prove-next-answer &optional *proof* prover.lisp
Related functions: prove proof-all-remaining-answers.

remval fact theory eptkit-dtp.lisp
Simulate EPIKIT function to remove the value of a term. Related functions: knownp proval
prologp prologx prologs save drop empty facts contents brf.

reset-dtp internals.lisp

save fact theory eptkit-dtp.lisp
Simulate EPIKIT function to save a fact in a theory. Related functions: knownp proval remval
prologp prologx prologs drop empty facts contents brf.

save-sentence-in-theory sentence &key :theory-name :label database.lisp
Related functions: empty-theory make-theory-from-sentences drop-sentence-from-theory
sentences-in.

sentences-in theory-name &key :with-atom database.lisp
Related functions: empty-theory make-theory-from-sentences save-sentence-in-theory
drop-sentence-from-theory.

settings output.lisp
Displays the values of all user set-able global variables. Related functions: show
show-proof-graph.

CHAPTER 3. DTP REFERENCE MANUAL 29

show object view.lisp output.lisp
object may be of type proof, answer, or symbol. In the first two cases, text output or a
DOT graph is drawn, depending on the value of *graphic-display*. If the argument is a
symbol, then it is taken to be the name of a database theory and a text listing of the contents
are displayed. Related functions: settings show-proof-graph.

show-proof-graph &optional *proof* output.lisp
Related functions: show settings.

show-proofs &optional proofs test.lisp
Related functions: test-dtp load-logic-samples.

show-theory-dag hierarchy.lisp
Related functions: includes unincludes includees decludes
included-active-theory-names all-theories.

test-dtp &key :reset test.lisp
Related functions: load-logic-samples show-proofs.

unincludes theory-name-1 theory-name-2 hierarchy.lisp
Related functions: includes includees decludes included-active-theory-names

show-theory-dag all-theories.

3.3 Lisp Files

A structured list of the Lisp files in the DTP system is shown in figure 3.2. These files can be found
in the logical directory dtp:code;

answers.lisp Knowledge Base
Successtul results of a proof effort. Related files: 1iterals clauses labels database.

backtrack.lisp Inference
Backjumping,
upon failure in the midst of solving a conjunction. Related files: misc-inference terms
subgoals conjunctions conjunct caching residue ordering prover.

below.lisp Graphical Explanations
Child expansions for existing proof spaces. Related files: view dotify textify.

binding-dag.lisp Unification
Binding lists. This is a slightly modified version of the file from MVL [Gin]. Related files:
symbols bindings match cnf.

bindings.lisp Unification
Binding lists. This is a slightly modified version of the file from MVL [Gin]. Related files:
symbols binding-dag match cnf.

caching.lisp Inference
Subgoal caching and recursion control. Related files: misc-inference terms subgoals
conjunctions conjunct backtrack residue ordering prover.

CHAPTER 3. DTP REFERENCE MANUAL

System Definition
dtp.lisp
Data Structures

types.lisp
variables.lisp
structures.lisp
classes.lisp

Extensions

internals.lisp
defsystem.lisp

Unification

symbols.lisp
bindings.lisp
binding-dag.lisp
match.lisp
cnf.lisp

Knowledge Base

literals.lisp
clauses.lisp
labels.lisp
answers.lisp
database.lisp

Inference

misc-inference.lisp
terms.lisp
subgoals.lisp
conjunctions.lisp
conjunct.lisp
backtrack.lisp
caching.lisp
residue.lisp
ordering.lisp
prover.lisp

View

view.lisp
dotify.lisp
textify.lisp
below.lisp

Miscellaneous

hierarchy.lisp
output.lisp
file.lisp
test.lisp
epikit-dtp.lisp

Figure 3.2: File Structure of DTP

30

CHAPTER 3. DTP REFERENCE MANUAL 31

classes.lisp Data Structures
Class definitions for nodes in DTP proof spaces: subgoals, conjunctions, and conjuncts. Related
files: types variables structures.

clauses.lisp Knowledge Base
Clauses (skolemized logical sentences in conjunctive-normal form). Related files: literals
labels answers database.

cnf.lisp Unification
Database, clausal form. This is a slightly modified version of the file from MVL [Gin]. Related
files: symbols bindings binding-dag match.

conjunct.lisp Inference
Computations for conjunct nodes in the proof space. Related files: misc-inference terms
subgoals conjunctions backtrack caching residue ordering prover.

conjunctions.lisp Inference
Computations for conjunction nodes in the proof space. Related files: misc-inference terms
subgoals conjunct backtrack caching residue ordering prover.

databases.lisp Knowledge Base
Theories and sentences. Related files: 1iterals clauses labels answers.

defsystem.lisp Eaxtensions
Common Lisp implementation of defsystem module. This is a slightly modified version of
Mark Kantrowitz’s Portable Mini-DefSystem (version February 2, 1990). It is available from
the CMU common lisp archive. Kantrowitz can be reached at mkant@GS8.SP.CS.CMU.EDU.
Related files: internals.

dotify.lisp Graphical Ezplanations
Proof node to DOT graph conversions. Related files: view textify below.

dtp.lisp
Defines the DTP package and system, and loads all the other files.

epikit-dtp.lisp Miscellaneous
An example of an interface for making DTP mimic another theorem proving system.!
User functions: brf knownp proval remval prologp prologx prologs save drop empty
facts content. Related files: hierarchy output file test.

file.lisp Miscellaneous
Loading of logical theories from files to lisp data structures. User functions: dtp-load.
Related files: hierarchy output test epikit-dtp.

hierarchy.lisp Miscellaneous
Directed acyclic in-
clusion graph for the theories of logical sentences. Related functions: all-theories includes
unincludes includees decludes included-active-theory-names show-theory-dag. Related
files: output file test epikit-dtp.

!The other theorem prover in this case is EPIKIT, from Epistemics [GS)].

CHAPTER 3. DTP REFERENCE MANUAL 32

internals.lisp Extensions
Simple, generic DTP extensions to Common Lisp. Related functions: reset-dtp. Related files:
defsystem.

labels.lisp Knowledge Base

Local labels for logical sentences. Related files: 1iterals clauses answers database.

literals.lisp Knowledge Base
Logical literals (positive and negative, ground and with variables). Related files: clauses
labels answers database.

match.lisp Unification
Logic variables. This is a slightly modified version of the file from MVL [Gin]. Related files:
symbols bindings binding-dag cnf.

misc-inference.lisp Inference
Generic functions for inference. Related files: terms subgoals conjunctions conjunct
backtrack caching residue ordering prover.

ordering.lisp Inference
Search control (priority queue for the agenda of subgoals). Related files: misc-inference
terms subgoals conjunctions conjunct backtrack caching residue prover.

output.lisp Miscellaneous
General text output to the user. User functions: settings show show-proof-graph. Re-
lated files: hierarchy file test epikit-dtp.

prover.lisp Inference
Top-level driver for the theorem prover. User functions: prove prove-next-answer
proof-all-remaining-answers. Related files: misc-inference terms subgoals
conjunctions conjunct backtrack caching residue ordering.

residue.lisp Inference
Residue (assumable literals) computations. Related files: misc-inference terms subgoals
conjunctions conjunct backtrack caching ordering prover.

structures.lisp Data Structures
Structure objects for DTP proofs. Related files: types variables classes.

subgoals.lisp Inference
Computations for subgoal nodes in the proof space. Related files: misc-inference terms
conjunctions conjunct backtrack caching residue ordering prover.

symbols.lisp Unification
Logic variables. This is a slightly modified version of the file from MVL [Gin]. Related files:
bindings binding-dag match cnf.

terms.lisp Inference
Procedural attachment for terms, and (hooks for) term inference/rewriting. Related
files: misc-inference subgoals conjunctions conjunct backtrack caching residue
ordering prover.

CHAPTER 3. DTP REFERENCE MANUAL 33

test.lisp Miscellaneous
Runs lisp examples in order to test the entire DTP system. User functions:
load-logic-samples test-dtp show-proofs. Related files: hierarchy output file
epikit-dtp.

textify.lisp Graphical Ezplanations

Proof node to text description conversions. Related files: view dotify below.

types.lisp Data Structures
Data types. Related files: variables structures classes.

variables.lisp Data Structures
Global parameters, user set-able variables, internal special variables, and initial values. See
3.1 for a complete listing. Related files: types structures classes.

view.lisp Graphical Ezplanations
Top-level drivers for explanation and graph-drawing routines, for both proof spaces and
proof answers. User functions: show settings show-proof-graph. Related files: dotify
textify below.

Chapter 4

References

[BM]

[Fri]

[Ged]

[Ged95]

[GF92]

[Gin]

[Gin93a]

[Gin93b]

[GNST]

[GS]

[Kor85]

Boyer and Moore. NQTHM: The Boyer-Moore theorem prover. Available online as
ftp://ftp.cli.com/pub/nqthm/nqthm. tar.Z
Email contact: kaufman@cli.com.

Alan M. Frisch. FRAPPS: Framework for Resolution-based Automated Proof Procedures.
Available online as

ftp://a.cs.uiuc.edu/pub/frapps/
Emalil contact: frisch@cs.uiuc.edu.

Donald F. Geddis. DTP: Don’s Theorem Prover. Available online as
http://meta.stanford.edu/dtp/.

Donald F. Geddis. Caching and First-Order Inference in Model Elimination Theorem
Provers. PhD thesis, Stanford University, Stanford, CA, 1995.

Michael R. Genesereth and Richard E. Fikes. Knowledge interchange format: Version 3.0
reference manual. Logic Group Report Logic—92-1, Stanford University, June 1992.

Matthew L. Ginsberg. MVL: A multi-valued logic theorem prover. Available online as
ftp://t.uoregon.edu/mvl/.

Matthew L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Research

(JAIR), 1:25-46, 1993. Available online as
ftp://t.uoregon.edu/papers/dynamic.dvi

JAIR is published in comp.ai.jair.papers.

Matthew L. Ginsberg. Essentials of Artificial Intelligence. Morgan Kautmann Publishers,
Inc., Los Altos, CA, 1993.

Michael R. Genesereth and Nils J. Nilsson. Logical Foundations of Artificial Intelligence.
Morgan Kaufmann Publishers, Inc., Los Altos, CA, 1987.

Michael R. Genesereth and Narinder P. Singh. EPIKIT. Available from Epistemics, Inc.
Contact the authors at genesereth@cs.stanford.edu or singh@cs.stanford. edu.

Richard E. Korf. Depth-first iterative deepening: An optimal admissible tree search.
Artificial Intelligence, 27(1):97-109, 1985.

34

CHAPTER 4. REFERENCES 35

[Kor92] Richard E. Korf. Linear-space best-first search: Summary of results. In Proceedings of the
Tenth National Conference on Artificial Intelligence (AAAI-92), pages 533-538, Menlo
Park, California, 1992. AAAT Press.

[Lab] Rewrite Rule Laboratory. RRL: Rewrite Rule Laboratory. Available online as
ftp://herky.cs.uiowa.edu/public/rrl.

[McC] William W. McCune. OTTER: Organized Techniques for Theorem-proving and Effective
Research. Available by anonymous FTP from Argonne National Laboratory. Contact
mccune@mcs.anl.gov or 708/972-3065.

